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Abstract. Various phylogenetic problems (such as DNA, protein and genome
reconstruction) involve estimating the ancestral states at the root of a tree from

data at the tips (leaves). A better understanding of various methods of ancestral
reconstruction would help us determine their reliability and credibility. This

project investigates the upper and lower bound for the correct probability of

reconstruction for Yule trees, under different methods of reconstruction. This
project also focuses on the question of whether of majority rule or parsimony

perform better. In addition, results such as monotonicity of parsimony, and the

effect of changing the state of one or two leaves are presented.

1. Introduction and Definitions

Ancestral reconstruction has been used to infer various ecological and biological
traits associated with ancestral root in a tree ([3] and [4]). However, different methods
require different computational complexity and different amounts of information, and
also have different degrees of accuracy of reconstruction.

1.1. Yule and Mutation Processes. In 1925, George Udny Yule proposed a simple
model of speciation. Yule’s pure birth model ([8]) is a random process to generate a
subclass of phylogenetic trees. The process can start with one or two lineages both of
length 0 at time t = 0. Then each lineage speciates independently of each other with
a constant diversification rate λ. The time of any given extant lineage to speciate has
an exponential distribution with mean 1

λ . In this model, we have three parameters:
t is the depth of the tree, λ is the speciation rate and Nt is the number of leaves the
tree has at time t.

We now superimpose on this random process for generating a tree a second stochastic
(mutation) process. This process is parameterized by the tree and its branch lengths,
and its state space is a set of k discrete states which undergo changes along the edges
of the tree according to a finite-state continuous-time Markov process.

The root of the Yule tree starts with an initial state. Each of the k states is given a
different label. Along any edge (from the root towards a leaf), a stochastic process
occurs for interstate changes. The current state changes (along an edge) according to
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a symmetric continuous-time Markov process with mutation rate µ. This project in-
vestigates some reconstruction methods used to estimate the original root state from
the states observed at the leaves.

1.2. Reconstruction Methods. There are three commonly-used methods to pre-
dict the original root state: majority rule, parsimony and maximum likelihood. Ma-
jority rule estimates the original root state to be the state that occurs the most
frequently amongst the leaves (tries are broken randomly). Parsimony estimates the
root state(s) that requires the minimal number of state changes on the edges of the
tree to generate the observed leaf states. Maximum likelihood finds the root state
that is the most likely to generate the observed leaf states.

Notice that these three methods require increasing information concerning the tree.
In particular, majority rule just requires the number of leaves in each state (or just
which state occurs the most frequently amongst the leaves); Parsimony requires the
tree topology and the leaf states; and maximum likelihood requires the leaf states,
tree topology and its edge lengths.

1.3. Main Results of this project.

• The monotonicity of parsimony estimation probability with respect to time;
• Upper and lower bounds on the probability of correct root state estimation

for various methods;
• Comparing the probability of correct rooted state estimation between different

reconstruction methods;
• The r-state parsimony dynamical equations under a Yule model;
• Investigation into the stability of parsimony reconstruction when one or two

leaf states are changed.

1.4. Definitions. Let T = Tt be the random variable consisting of the Yule tree
(tree topology and branch lengths) at time t with parameters λ (speciation rate) and
µ (mutation rate).

Define pPAR(Tt) to be the probability that parsimony would estimate the correct
root state with the observed leaf states. Let

pYule
PAR(t) := ET [pPAR(Tt)],

where ET refers to expectation over all Yule trees Tt grown for time t.

Similarly, define pMR(Tt) and pML(Tt) to be the probability that majority rule and
maximum likelihood would estimate the correct root state with the observed leaf
states. Let

pYule
MR (t) := ET [pMR(Tt)] and pYule

ML (t) := ET [pML(Tt)]
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Figure 1. Six-leaf example of the 2-state model (with 1 and 2 initial lineages)

to be the expected probability that majority rule and maximum likelihood would es-
timate the correct root state at time t for a Yule tree.

Also, define pYule
∗ := limt→∞ pYule

∗ (t), for ∗ = MR, ML, and PAR.

2. The Monotonic Property of pYule
PAR(t)

For the one initial lineage start. From Section 2 of [2], the authors suggested the
following conjecture:

Conjecture 2.0.1. Let ρ = µ
λ . If ρ < 1

6 , then pYule
PAR(t) decreases monotonically with

respect to time t.

In this section, we establish that this conjecture is true. Following [2], let St be the
expected probability of making a correct estimation, Dt be the expected probability
of making a wrong estimation, and Et be the expected probability of a tie. The
conjecture is equivalent to showing that:

Theorem 2.0.2. Let ρ = µ
λ . If ρ < 1

6 , then

dpYule
PAR(t)

dt
≤ 0,

for all time t > 0.
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Figure 2. Partial vector fields of the system

Proof. Since the probability of a wrong estimation is 1−pYule
PAR(t), we have

dpYule
PAR(t)
dt ≤ 0

if
dpYule

PAR(t)

dt
− d(1− pYule

PAR(t))

dt
≤ 0, for all t.

This holds if

(2.0.1)
d(St + 1

2Et)

dt
−
d(Dt + 1

2Et)

dt
≤ 0.

Eqn. (2.0.1) holds provided that

dSt
dt
− dDt

dt
≤ 0,

which, in turn, holds if dSt
dt ≤ 0 and dDt

dt ≥ 0.

From here we will consider the 2-D vector field of St and Dt from the 2-D autonomous
differential equation (with a linear time transformation of u = λt) obtained from [2]
as:

dS

du
= (1− ρ)S + (ρ− 2S)D − S2, and

dD

du
= (1− ρ)D + (ρ− 2D)S −D2.

From [2] we know that St and Dt converges to S∞ :=
1−2ρ+

√
(1−6ρ)(1−2ρ)
2 and

D∞ :=
1−2ρ−

√
(1−6ρ)(1−2ρ)
2 respectively as t→∞. Now, we firstly show that St will

never be less than and Dt will never be more than D∞. At t = 0, the system starts
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Figure 3. The four possible types of path that increase S or decrease D.

at S0 = 1 and D0 = 0. Looking at the vector field (see Fig. 2) on the horizontal and
vertical line that pass through the limit point (S∞, D∞), assuming D∞ ≥ ρ/2 and
S∞ ≥ ρ/2 (this is implied by the limits of S and D calculated in [2]).

From Fig. 2, the red arrow is the vertical vector field direction (partial in D) and the
blue arrow is the horizontal vector field direction (partial in S). Fig. 2 shows that by
starting at (S,D) = (1, 0), the orbit which goes to (S∞, D∞) could never cross the
horizontal or the vertical dotted line. Hence the only way for S to decrease or for D
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to increase is if one of the following orbits occurs (as in Fig. 3). For each of the orbit,
it will cross a horizonal line or a vertical line at least 3 times.

Since dS
du and dD

du are linear in D and S respective, the orbit could not cross a vertical
or horizontal line three times or more. This can be proved by contradiction.

Assume the orbit crosses a vertical or horizontal line three times (or more), then
looking at the partial vector field perpendicular to that vertical or horizontal line
would need to change in direction (at least) twice. This would imply that dS

du is not

linear in D and dD
du is not linear in S. This forms a contradiction.

Note, Fig. 3 is the only 4 possible types of path that increase S or decrease D. Hence
S and D can only be decreasing and increasing respectively over time. Therefore,
pYule
PAR is indeed monotonically decreasing over time. �

For the two lineages start, let 4 be the corresponding quantity in the two lineages

state (Fig. 1 (i)). Let S4t be the expected probability of making a correct estima-

tion, D4t be the expected probability of making a wrong estimation, and E4t be the

expected probability of a tie. Therefore: pYule
PAR

4
(t) = S4t + 1

2E
4
t . We will show:

Theorem 2.0.3. Let ρ = µ
λ . If ρ < 1

6 , then:

(1)

dpYule
PAR

4
(t)

dt
≤ 0,

for all t > 0.

(2)

pYule
PAR

4
(t) ≥ 1

2

(
1 + (1 + 2ρ)

√
(1− 6ρ)(1− 2ρ)

)
,

for all t > 0.

Proof. For (1):

dpYule
PAR

4
(t)

dt
≤ 0.

The above equation holds, if:

d
(
S4t + 1

2E
4
t

)
dt

≤ 0,

or equivalently if:

d
(
S4t −D

4
t

)
dt

≤ 0.
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The previous equation holds, if:

d
(
S2
t + 2StEt − (D2

t + 2DtEt)
)

dt
≤ 0,

and which holds, if:
d((St −Dt)(2− St −Dt))

dt
≤ 0,

or equivalently, if:
d(2St − 2Dt − S2

t +D2
t )

dt
≤ 0.

Which in turn holds, if:

2(1− St)
dSt
dt
− 2(1−Dt)

dDt

dt
≤ 0.

The last statement is true, as both 1 − Dt and 1 − St is greater or equal to 0, and
dSt
dt ≤ 0 and dDt

dt ≥ 0 for ρ < 1
6 . Hence part (1) of the theorem is proved.

For (2):
Let

pYule
PAR

4
= lim
t→∞

pYule
PAR

4
(t),

and let S4, D4 and E4 be the corresponding limits as t→∞ for S4(t), D4(t) and
E4(t).

Then, pYule
PAR

4
= S4 + 1

2E
4 = 1

2

(
1 +

(
S4 −D4

))
.

From the proof of part (1), S4 −D4 = (S∞ −D∞)(1 + E∞), and from [2],

(S∞ −D∞)(1 + E∞) =
√

(1− 6ρ)(1− 2ρ), E∞ = 2ρ.

Thus,

pYule
PAR

4
=

1

2

(
1 + (1 + 2ρ)

√
(1− 6ρ)(1− 2ρ)

)
.

Part (2) now follows since part (1) implies that pYule
PAR

4
(t) ≥ pYule

PAR

4
, for all t > 0. �

3. 2-state Model Analysis and Bounds

For a 2-state model, it is convenient to let the two states be −1, 1 (1 and −1 are
used rather than 0 and 1 because for majority rule we could just add up all the root
states and based on the sign of the result to estimate the root state). Let

• X0 be the random variable of the root state of a Yule tree;
• X = (Xi)i=1,...,NT be the random variable of the leaf states of the same Yule

tree with root state X0.
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Theorem 3.0.4. If 4µ > λ, then P(X̂0 = X0) → 1
2 as t → ∞ for any estimator

X̂0 = X̂0(X) of X.

Proof. We apply Theorem 14.1 of [5]. In our context (2-state model, and constant
mutation rate) this says that:

P
(
X̂0 = X0|T

)
≤ 1

2
+NT exp(−4µt),

for any reconstruction method. Note that we are conditioning on the tree T (and
branch lengths).

Now, for any event E, we have: P(E) = ET [P(E|T )], and so, applying this to

E = “X̂0 = X0” gives us:

P(X̂0 = X0|T ) ≤ 1

2
+ exp((λ− 4µ)t)→ 1

2
as t→∞ for any λ < 4µ.

�

3.1. Majority Rule. For majority rule, consider the random variable

Zt = X1 +X2 + · · ·+XNt(where Nt ∼ geo(λt)).

Note that the Xi’s are identically distributed but not independent. Without loss of
generality, let the root state be 1. If a realization of Z is positive, then there are
more 1s than −1s in the leaf states, hence a correct estimation will be made by the
majority rule. If Z is negative, a wrong estimation will be made. If Z is zero, there is
only a 50 percent probability that Z will be the correct estimation (as a tie is broken
uniformly at random).

Let us now examine the expectation and variance of Zt.

(3.1.1) E[Zt] = ET

[
Eµ

NT∑
i=1

[Xi|T ]

]
= ET [NT Eµ[Xi|T ]] = ET

[
NT e

−2µt] = eλte−2µt

(recall T refers to the topology and edge length of the Yule tree).

For the variance, we obtain:

(3.1.2) V ar(Zt) = V arT (E[Zt|T ]) + ET [V ar(Zt|T )].

The first term of the above equation V arT (E[Zt|T ]), can be expressed as:

(3.1.3) V arT (E[Zt|T ]) = V arT
(
NT e

−2µt) = e(2λ−4µ)t
(
1− e−λt

)
.
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Because ET [V ar(Zt|T )] ≥ 0, we conclude that:

(3.1.4) V ar(Zt) = e(2λ−4µ)t
(
1− e−λt

)
+ ET [V ar(Zt|T )] ≥ e(2λ−4µ)t

(
1− e−λt

)
.

Therefore, for any ε > 0, there exist t0 such that:

(3.1.5)
V ar(Zt)

E[Zt]2
> 1− ε for any t > t0 for all λ > 4µ.

The variance of Zt occurs from the value of NT and the mutation process.

In the light of this result, let’s refocus our attention on the random variable Yt = Zt
NT

.

Let’s consider the E[Yt] and V ar(Yt). Note that Yt also can’t be asymptotically nor-
mal, as −1 ≤ Yt ≤ 1 and yet σ2/µ2 6→ 0.

Theorem 3.1.1.

(3.1.6) pYule
MR ≥ 2− 1

(1− 4µ/λ)2
.

Proof. For E[Yt], we obtain:

E[Yt] = ET
[
Eµ
[
Zt
NT
|T
]]

= ET
[
e−2µt

]
= e−2µt.

For V ar(Yt), we obtain:

V ar(Yt) = V arT (Eµ[Yt|T ]) + Eµ[V arT (Yt|T )].

Firstly we find that:

V arT (Eµ[Yt|T ]) = V arT
(
e−2µt

)
= 0.

Secondly we find an upper bound for ET [V arµ(Yt|T )].

Let α = 4µ and WT (i, j) be the length from the first split to time t for leaf Xi

and Xj (in Fig. 4). We could derive the following:

ET [V arµ(Yt|T )] = ET

 1

N2
T

NT∑
i,j=1

Covµ(Xi, Xj)

 = ET

 1

N2
T

NT∑
i,j=1

(eαWt − 1)e−4µt

 .
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Figure 4. Defining WT (i, j).

This can be manipulated to:

ET [V arµ(Yt|T )] = ET

 1

N2
T

NT∑
i,j=1

eαWT (i,j)

 e−4µt − e−4µt.

Let’s consider ET
[

1
N2
T

∑NT
i,j=1 e

αWT (i,j)
]
, and let

dT (t) :=
1

N2
T

NT∑
i,j=1

eαWT (i,j) and D(t) := ET [d(t)].

Lemma 3.1.2. The squared coefficient of variation of the random variable Yt, i.e.
σ2
t

µ2
t

, is given by D(t)− 1.

Consider the change from time t to t + δ, three events could happen: No speciation
occurs with probability 1 − NT λδ + O(δ2); One speciation occurs with probability
NT λδ +O(δ2); Two or more speciation occurs with probability O(δ2).
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This lead the following equation:
(3.1.7)

d(t+δ) = d(t)
(
1−NT λδ + δ2

)
+

1

(NT + 1)2

NT +1∑
i,j=1

(
eαW

′
T (i,j)

) (
NT δλδ +O

(
δ2
))

+O
(
δ2
)
.

Considering the distribution of W
′

T (i, j), we found that since when one of the leaf
speciates, each of the leaf has the same chance of speciation. Hence:
(3.1.8)

ET

 1

(NT + 1)2

NT +1∑
i,j=1

(
eαW

′
T (i,j)

)
(NT λ)

 = ET

λ(NT + 2)(NT )2

(NT + 1)2(NT )2

NT∑
i,j=1

eαWT (i,j) +
λNT

(NT + 1)2
eαt

 .
Now let δ → 0, rearrange, and take the expectation of both sides of Eqn. 3.1.7
to obtain:

(3.1.9)
dD(t)

dt
= −λET [NT d(t)] + λET

 1

(NT + 1)2

NT +1∑
i,j=1

(
eαW

′
T (i,j)

)
NT

 .
This equation can be simplified with the help of Eqn. 3.1.8.

dD(t)

dt
= λET

[
NT

(NT + 1)2

]
eαt − λET

[
NT

(NT + 1)2
dT (t)

]
.

This equation can be further simplified to:

dD(t)

dt
= λET

[
NT

(NT + 1)2
(
eαt − dT (t)

)]
,

this can be turned into an inequality:

dD(t)

dt
≤ λET

[
1

NT

(
eαt − dT (t)

)]
.

Now, dT (t) ≥ 1, for all t ≥ 0, so:

dD(t)

dt
≤ λET

[
1

NT

(
eαt − 1

)]
.

Moreover, ET
[

1
NT

]
= λte−λt

1−e−λt , so

D(t) ≤
∫ t

0

λ2se−λs

1− e−λs
(eαs − 1) ds+D(0).
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Where D(0) = 1, and σ2

µ2 = D(t)− 1, by lemma 3.1.2.

Therefore:

(3.1.10) r := lim
t→∞

σ2

µ2
≤
∫ t

0

λ2se−λs

1− e−λs
(eαs − 1) ds.

Put u = λs, du = λds, so that Eqn. 3.1.10 becomes:

(3.1.11) r ≤
∫ t

0

ue−u

1− e−u
(
e(α/λ)u − 1

)
du.

Now, u
1−e−u ≤ 1 + u for all u ≥ 0. Hence, from, Eqn. 3.1.11:

(3.1.12) r ≤
∫ t

0

(1 + u)
(
e(α/λ−1)u − e−u

)
du.

Using integration by parts with W = (1 + u), dW/du = 1, dZ = e−u(1−α/λ) − e−u,
Z = −1

1−α/λe
−u(1−α/λ) + e−u we obtain:∫ t

0

(1 + u)
(
e(α/λ−1)u − e−u

)
du =

1

(1− α/λ)2
− 1.

Thus, from Eqn. 3.1.10 and α = 4µ we get:

lim
t→∞

σ2

µ2
≤ 1

(1− α/λ)2
− 1→ 0 as

µ

λ
6→ 0.

Hence, by Chebyshev’s inequality, we obtain the desired theorem. �

In particular, we obtain:

Corollary 3.1.3. pYule
MR → 1 as µ/λ→ 0.

We can show Zt is not always asymptotically normal as t → ∞. Suppose to the
contrary that Zt were asymptotically normal as t → ∞. By Corollary 3.1.3 we can
conclude that P(Z∞ > 0) ≥ 0.9 for µ

λ sufficiently small. However if Zt is asymptoti-
cally normal when t→∞, by Eqn. 3.1.5 and this implies that:
(3.1.13)

P(Zt < 0) = P

(
(Zt − E[Zt])/

√
V ar(Zt) <

E[Zt]√
V ar(Zt)

)
≥ P((Zt−E[Zt])/

√
V ar(Zt) < 1−ε) ≈ 0.16.
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This forms a contradiction with P(Z∞ > 0) ≥ 0.9 hence Z∞ is not always asymptot-
ically normal.

I would like to propose the following conjecture that:

Conjecture 3.1.4.

(3.1.14) pYule
MR > 1/2 if λ > 4µ.

Here, it’s worth mentioning a result in ([1] page 413) which implies that:

pYule
MR (t) ≥ 1

2
for all µ, λ and all t > 0.

3.2. Parsimony and Majority Rule Upper Bound. Without loss of generality,
let the root state be 1. A result from [2] states: pYule

PAR(t) > 1
2 if µ < 1

6λ otherwise

pYule
PAR → 1

2 as t→∞.

We can see that for the one lineage start Yule tree:

(3.2.1) pYule
PAR ≤ 1−Q

(
pYule
PAR

)
as t→∞.

The quantity Q can be calculated as:

Q =

∫ ∞
0

1

2
(1− exp(−2lµ))λ exp(−λl)dl,

which can be calculated to be:

Q =
µ

λ+ 2µ
=

ρ

1 + 2ρ
for ρ =

λ

µ
.

Theorem 3.2.1. Therefore, solving the linear equation above (for the one lineage
start) results in:

(3.2.2) pYule
PAR ≤

1

1 +Q
.

A similar upper bound calculation could be done for majority rule as the same in-
equality constraints exists for pYule

MR , hence we can conclude:

(3.2.3) pYule
MR ≤

1

1 +Q
.

Combined with the monotonicity of pYule
PAR, we can conclude the following:
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Figure 5. Upper and lower correct estimation probability bounds
as t→∞.

Corollary 3.2.2.

(3.2.4) pYule
PAR(t) ≤ 1

1 +Q
, for all t ≥ 0.

All the correct reconstruction bounds for parsimony and majority rule are plotted
in Fig. 5.

3.3. Star-tree. Consider now a star-tree as shown in Fig. 6, and suppose that
Nt ∼ geo(λt). Let the symbol ∗ be conditioning T to be a star tree with Nt leaves.
Define

p∗MR(t) := ET [pMR(T ∗t )].

Then we obtain the following result:

Theorem 3.3.1.

(3.3.1) p∗MR(t)→ 1 as t→∞ for all λ > 4µ.
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Figure 6. Example of a Star-tree.

Proof. Let T ∗ be a star-tree with Nt ∼ geo(λt). Let Yt =
∑Nt
i=1Xi
NT ∗

. Let’s consider the

first two moments E[Yt] and V ar(Yt). For E[Yt], we obtain:

Lemma 3.3.2.

E[Yt] = ET ∗
[
Eµ
[
Zt
NT ∗

|T ∗
]]

= ET ∗
[
e−2µt

]
= e−2µt.

For V ar(Yt), we obtain:

V ar(Yt) = V arT ∗(Eµ[Yt|T ]) + Eµ[V arT ∗(Yt|T ∗)].

Firstly, it is clear that:

V arT ∗(Eµ[Yt|T ∗]) = V arT ∗(e
−2µt) = 0.

Secondly, we can derive an upper bound for ET ∗ [V arµ(Yt|T ∗)]:

ET ∗ [V arµ(Yt|T ∗)] = ET ∗
[
V arµ

(
NT ∗∑
i=1

Xi

NT ∗
|T ∗
)]

.
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Now, in a star tree, each Xi is independently (and identically) distributed, hence:

ET ∗ [V arµ(Yt|T ∗)] = ET ∗
[
V arµ(Xi)

NT ∗

]
.

We know that V arµ(Xi) = 1− e−4µt, therefore:

ET ∗ [V arµ(Yt|T ∗)] = ET ∗
[

1− e−4µt

NT ∗

]
.

Since ET ∗
[

1
NT ∗

]
= λte−λt

1−e−λt , we obtain:

ET ∗ [V arµ(Yt|T ∗)] =
(1− e−4µt)λte−λt

1− e−λt
.

Hence, for all λ > 4µ, we obtain:

E[Yt]
2

V ar(Yt)
= e−4µt ÷ (1− e−4µt)λte−λt

1− e−λt
=
e(λ−4µ)t(1− e−λt)
λt(1− e−4µt)

→∞, as t→∞.

Applying Chebyshev’s inequality suffices to prove the theorem. �

4. Which method is better? Maximum likelihood vs. Majority rule vs.
Parsimony

Firstly, let us consider binary trees with just three leaves. Such a tree will have
eight different combinations of leaf states. There are two states that cause majority
rule and parsimony to have a different probability of estimating the right root state.
Assume the root state is 1. For leaf combination -1,-1,1, majority rule has probability
0 of correct estimate, while parsimony has probability 0.5 of correct estimate; On
the other hand for leaf combination 1,1,-1, majority rule has probability 1 of cor-
rect estimate, while parsimony has a probability 0.5 of correct estimate (see Fig. 7).
Therefore, there are scenarios in which either method can perform more accurately
than the other.

What if we condition on the topological tree, with given edge lengths? Consider
the same three-leaf example, let the speciation occur in the left branch at time x (for
some fixed x < t), where t is the total time (see Fig. 7). For leaf state −1,−1, 1 (say
state P), majority rule has probability 0 of correct estimate, while parsimony only
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Figure 7. Three-leaf example of the 2-state model

got probability 0.5 of correct estimate. On the other hand for leaf state 1, 1,−1 (say
state M), majority rule has probability 1 of correct estimate, while the parsimony
has probability 0.5 of correct estimate. While all the other outcomes, majority rule
and parsimony have the same probability of correct estimate. Which method would
perform better overall depends on the probability of each outcome state (P and M).

The following lemma will be useful in this section:

Lemma 4.0.3. Let Xi be the state of the ith leaf and let X1, X2, . . . , XN be the set
of random variables for the states of each leaf. Xi’s are identically distributed (but
not independent). We have:

P(Xi = 1) =
1

2
(1 + exp[−2µt])

and

P(Xi = −1) =
1

2
(1− exp[−2µt]).

Therefore:

E[Xi] = exp[−2µt].

By using Lemma 4.0.3, we can calculate P(state P|x) and P(state M|x) by condi-
tioning the two cases where vertex v in Fig. 7 is state 1 or -1:
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Proposition 4.0.4.

P(state P|x) =

(
1

16

(
1 + e−2µx

))(
1− e−2µ(t−x)

)2 (
1 + e−2µt

)
+

(
1

16

(
1− e−2µx

))(
1 + e−2µ(t−x)

)2 (
1 + e−2µt

)
,

P(state M|x) =

(
1

16

(
1 + e−2µx

))(
1 + e−2µ(t−x)

)2 (
1− e−2µt

)
+

(
1

16

(
1− e−2µx

))(
1− e−2µ(t−x)

)2 (
1− e−2µt

)
.

By the above proposition we obtain the following:

Theorem 4.0.5. P(state P|x)− P(state M|x) = −(1/4)e−2µt + (1/4)e−2µ(3t−2x) < 0
for all t > x.

In particular, for any tree (including Yule tree) with three leaves with clocked edge
lengths, state M is more likely than state P for any value of x on a 2-state symmetric
model.

Going back to Theorem 4.0.5, it is interesting to note the discontinuity of the dif-
ference as P(state P|x = 0) = P(state M|x = 0). On the other hand,
P(state P|x)− P(state M|x)→ −(1/4)e−2µt + (1/4)e−2µ(3t) < 0 as x→ 0+.

In the light of this result, we pose the following two conjectures:

Conjecture 4.0.6.

(4.0.2) pYule
MR (t) > pYule

PAR(t), for all t > 0.

Conjecture 4.0.7.

(4.0.3) pYule
MR (t;n) > pYule

PAR(t;n), for all t > 0.

The above 3-leaf analysis established the affirmative result for Conjecture 4.0.7
when n = 3. Note also that the truth of Conjecture 4.0.7 would imply the truth of
Conjecture 4.0.6.

Fig. 8 shows a plot of simulations by Olivier Gascuel (pers. comm.) for 1000 taxa
(leaves, species), on 1000 randomly generated Yule trees (for each µ/λ ratio) and 1000
mutation process in each generated Yule tree. Different methods are tested to find
the percentage of correct estimation for each method in terms of µ/λ ratio. Maxi-
mum likelihood method outperforms every other type of reconstruction (this can be
formally proven, due to the uniform prior). Also from the graph, it seems majority
rule outperforms parsimony, even though majority rule uses less information than
parsimony! This is interesting in the light of a quotation from [3]:
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Figure 8. Plot for simulation on 1000 taxa

“Incorporation phylogenetic uncertainty very rarely changes the in-
ferred ancestral state and does not improve the accuracy of the recon-
structed ancestral sequence.”

In fact our proofs and simulations support this idea, since majority rule does not
use the structure of the tree and seems to have a higher correct reconstruction prob-
ability than parsimony. One interesting fact is the existence of a ultrametric binary
tree for which parsimony performs better than majority rule, as shown in Fig. 9.

By Lemma 4.0.3, the probability of a correct estimation by majority rule and parsi-
mony given the tree T 7

t as Fig. 9 is (letting a = 1
2 (1 + exp[−2µt]) > 0.5 and letting

ε→ 0):

pMR
T 7

(t) = a,

and, a case analysis shows that:

pPAR
T 7

(t) =
1

2

(
4

2

)
a2(1− a)2 +

(
4

1

)
a3(1− a) +

(
4

0

)
a4 = 3a2 − 2a3.

The last two equations imply:

pPAR
T 7

(t) ≥ pMR
T7(t), for any a such that

1

2
≤ a ≤ 1.
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Figure 9. Seven-leaf example where Parsimony outperforms Major-
ity Rule

5. k-state Model

Since DNA sequences are made up of four types of nucleotides and various other
bio-molecular data has more than 2 states, the study of a k-state model (where k ≥ 2)
would help to understand more realistic evolutionary processes.

In this section, we still work under the Yule model, with parameters t (time), λ
(speciation rate) and µ (mutation rate). The variables t and λ are the same as in the
last section, however µ is the rate of changing from state i to any particular other
state j.

5.1. Preliminary. Let the probability of the state change from a to b, conditioned
on starting with state a, along a edge length y be Pab(y). Pab(y) can be calculated
by considering how it changes as the edge length y increases to y + δ (with δ small):

Pab(y + δ) = (1− (r − 1)µδ)Pab(y) +
(r − 1)µδ

r − 1
(1− Pab(y)) +O(δ2).

Letting δ → 0 we obtain:
dPab(t)
dt

= µ− rµPab(t).

Solving this differential equation (by the integration factor method) with the initial
condition Pab(0) = 0 if a 6= b and Pab(0) = 1 if a = b we obtain:
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Lemma 5.1.1.

(5.1.1) Pab(t) =

{
1
r (1− e−rµt), if a 6= b;
1
r (1 + (r − 1)e−rµt), if a = b.

5.2. System of DEs for k-state Parsimony. For the k-state model, consider the
parsimony method. We define Pm(t) to be the probability the root estimation con-
tains m states and one of those state is the true state; Qm(t) to be the probability the
root estimation contains m states and none of those state is the true state. Those two
sets of probabilities are dependent on t (time), λ (speciation rate) and µ (mutation
rate).

Consider the first δ period of time (for the Yule tree with k states), there are four
events that could happen. Either:
(i) no speciation nor mutation occurs,
(ii) one speciation and no mutation occurs,
(iii) no speciation occurs and one mutation occurs, Or
(iv) the number of mutation plus speciation events is greater than one.

Also each event has a corresponding probability. There is a probability of 1−λδ−µδ+
O(δ)2 that neither speciation nor mutation occurs; a probability of λδ + O(δ)2 that
one speciation and no mutation occurs; a probability of µδ+O(δ)2 that no speciation
and one mutation occurs; and a probability of O(δ)2 that the number of mutation
plus speciation evnts is greater than one.

In this way we can generate a system of differential equations for Pm(t) and Qm(t)
(note that the sum of Pm and Qm equals 1).

dPm(t)

dt
= (−µ− λ)Pm(t) + µ

(
Pm(t) · m− 1

r − 1
+Qm(t) · m

r − 1

)

+λ

 ∑
v,w≥m

Pv(t)Pw(t) ·

(
r − 1
m− 1

)(
r −m
v −m

)(
r − v
w −m

)
(
r − 1
v − 1

)(
r − 1
w − 1

)


+λ

 ∑
v+w=m

2Qv(t)Pw(t) ·

(
r − 1
v − 1

)(
r − v
w

)
(
r − 1
v − 1

)(
r − 1
w

)
 .

dQm(t)

dt
= (−µ− λ)Qm(t) + µ(Pm(t) · r −m

r − 1
+Qm(t) · r −m− 1

r − 1
)
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+λ

 ∑
v,w≥m

Qv(t)Qw(t) ·

(
r − 1
m

)(
r −m− 1
v −m

)(
r − v − 1
w −m

)
(
r − 1
v

)(
r − 1
w

)


+λ

 ∑
v+w=m

Qv(t)Qw(t) ·

(
r − 1
v

)(
r − v − 1

w

)
(
r − 1
v

)(
r − 1
w

)


+λ

 ∑
v≥m, ,w≥m+1

2Qv(t)Pw(t) ·

(
r − 1
m

)(
r −m− 1
v −m

)(
r −m− 1
w −m− 1

)
(
r − 1
v

)(
r − 1
w − 1

)
 .

We now check that the above equations, when r = 2, agrees with the D.E. equa-
tion from [2].

dP1(t)
dt = (−µ−λ)Pm(t)+µQm(t)+λ

∑v,w≥1 Pv(t)Pw(t) ·

 1
0

 1
v − 1

 2− v
w − 1


 1
v − 1

 1
w − 1



 .

Hence:
dP1(t)
dt = (−µ− λ)Pm(t) + µQm(t) + λ

(∑
(v,w)=(1,1),(1,2),(2,1) Pv(t)Pw(t)

)
.

So the first equation reduces to the 2-state D.E. equation from [2].

Possible future work involves checking the other two equations agree with the two
state model, then try to extend this DE for 3-state and solve for a solution.

5.3. Which method is better? Majority rule vs. Parsimony. Firstly, let us
consider binary trees with just three leaves. Assume the root state is 0. There are
two states that cause majority rule and parsimony to have a different probability of
correctly estimating the root state. Consider a three-leaf tree, let the speciation occur
in the left branch at time x (for some fixed x < t), where t is the total time (see Fig
10). For leaf states a, a, 0 (say state P), majority rule has probability 0 of a correct
estimate, while parsimony only got probability 0.5 of a correct estimate. On the other
hand for leaf states 0, 0, a (say state M), majority rule has probability 1 of a correct
estimate, while the parsimony has probability 0.5 of a correct estimate. For all the
other leaf states outcomes, majority rule and parsimony have the same probability
of a correct estimate. Which would perform better overall depends on the relative
probabilities of the particular outcome states P and M.

Lemma 5.3.1.

P(state P|x)− P(state M|x)
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Figure 10. Three-leaf example of the r-state model

=
[
e−rµ(3t−2x)r − e−rµ(−x+2t)r + 2e−rµ(−x+2t) − e−rµ(3t−2x) − e−rµt

]
/r2.

Proof. At the speciation point there are r possibilities for state P and M with the
possibilities denoted by i. The probability of state P conditional on the speciation at
time x with 0 ≤ x ≤ t is:

P(state P|x) =

r−1∑
i=0

P(state P ∩ i|x).

The above equation can be simplified to:

(r − 2)P(state P ∩ i 6= 0, a|x) + P(state P ∩ i = 0|x) + P(state P ∩ i = a|x).

Each of those probabilities could be calculated by using 5.1.1, to obtain:

P(state P ∩ i 6= 0, a|x) =
(
1− e−rµx

) (
1− e−rµ(t−x)

)2 (
1 + (r − 1)e−rµt

)
/r4,

P(state P ∩ i = 0|x) =
(
1 + (r − 1)e−rµx

) (
1− e−rµ(t−x)

)2 (
1 + (r − 1)e−rµt

)
/r4,

P(state P ∩ i = a|x) =
(
1− e−rµx

) (
1 + (r − 1)e−rµ(t−x)

)2 (
1 + (r − 1)e−rµt

)
/r4,

from which we obtain:
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Proposition 5.3.2.

P(state P|x) = (r − 2)
(
1− e−rµx

) (
1− e−rµ(t−x)

)2 (
1 + (r − 1)e−rµt

)
/r4

+
(
1 + (r − 1)e−rµx

) (
1− e−rµ(t−x)

)2 (
1 + (r − 1)e−rµt

)
/r4

+
(
1− e−rµx

) (
1 + (r − 1)e−rµ(t−x)

)2 (
1 + (r − 1)e−rµt

)
/r4.

Similarly, let the probability of state M conditional on the speciation at time x with
0 ≤ x ≤ t is:

P(state M|x) =

r−1∑
i=0

P(state M ∩ i|x).

The above equation can be simplified to:

(r − 1)P(state M ∩ i 6= 0|x) + P(state M ∩ i = 0|x).

Each of these probabilities can be calculated by using 5.1.1, to obtain:

P(state M ∩ i 6= 0|x) =
(
1− e−rµx

) (
1− e−rµ(t−x)

)2 (
1− e−rµt

)
/r4, and

P(state M ∩ i = 0|x) =
(
1 + (r − 1)e−rµx

) (
1 + (r − 1)e−rµ(t−x)

)2 (
1− e−rµt

)
/r4.

Hence, we obtain:

Proposition 5.3.3.

P(state M|x) = (r − 1)
(
1− e−rµx

) (
1− e−rµ(t−x)

)2 (
1− e−rµt

)
/r4

+
(
1 + (r − 1)e−rµx

) (
1 + (r − 1)e−rµ(t−x)

)2 (
1− e−rµt

)
/r4.

Subtracting (Prop. 5.3.2) from (Prop. 5.3.3) and simplifying, leads to the expression
in the lemma. �

In lemma 5.3.1, notice the denominator is positive, the first 2 terms of the nominator
is negative or 0 (by properties of exponential and 0 ≤ x ≤ t) and the last 3 terms
of the nominator is negative or 0 by the AM-GM inequality. Hence, we obtain the
following results.

Theorem 5.3.4. For any tree with three leaves with clocked edge lengths, state M is
more likely than state P for any value of x on a r-state symmetric model.

In particular, for a Yule tree with three leaves, state M is more likely than state
P for any value of x on a r-state symmetric model.
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Figure 11. 2-state parsimony, one leaf state change

6. Changing One or More Root State

6.1. Case I: 2-state parsimony. What are the possible effects of changing one leaf
state from -1 to 1 on the two state model? Define the root estimation before the
change to be original estimation, and the estimation after the change to be the
modified estimation (an ′ is used).

For majority rule, if the original estimation is {1} or {−1, 1}, then the modified
estimation is always {1}; If the original estimation is {−1}, then the modified esti-
mation is {−1, 1} or {−1}.

For parsimony, consider the tree in Fig. 11 and let:
[Y ] =

∑
all elements in Y , where Y is the parsimony estimation set.

Lemma 6.1.1. For a tree with two initial branches, let the original estimation for
the branches be A and B, while the modified estimation for the branches is A′ and
B. Let the original estimation for the root be C and the modified estimation for the
branches be C ′. If [A′]=[A], [A]+1 or [A]+2, then [C ′]=[C], [C]+1 or [C]+2. [This
is both necessary and sufficient]
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This lemma is proved by considering all possible cases of A, C and A′.

Let the parsimony estimation set be as labeled in Fig. 11, then as the consequence of
lemma 6.1.1, we are given [Y ′0 ] = [Y0], [Y0] + 1 or [Y0] + 2; implies [Y ′1 ] = [Y1], [Y1] + 1
or [Y1] + 2; ... [Y ′m] = [Ym], [Ym] + 1 or [Ym] + 2. Hence we obtain the theorem below:

Theorem 6.1.2. Under a 2-state model with a binary tree, changing one of the leaf
states from -1 to 1 can only increase the sum of the root estimation set by 2, 1 or
make no change for the root estimation set.

6.2. Case II: r-state parsimony. What are the possible effects of changing one
leaf state from a to 0 in the r-state model? As before, we define the root estimation
before the change to be original estimation, and the estimation after the change to
be the modified estimation (an ′ is used).

For majority rule the outcome is trivial. If the original estimation is 0 or contains
0, then the modified estimation will be the set {0}. If the original estimation does
not contains 0, then the modified estimation will either be the same as the original
estimation, or it will be the original estimation union {0}.

No similar results for r-state parsimony holds for the 2-state setting, in fact changing
one leaf state from a 6= 0 to 0 can cause the modified estimation to fail to contain
0, while the original estimation does! Similarly, changing one leaf state from a 6= 0
to 0 can cause the modified estimation to contain 0 and some other state, while the
original estimation only contains 0. Here is one such example for the latter case (the
former case can be obtained by starting the tree in Fig. 12 at the first speciation
point, as labeled by *).

Combining the former and the latter case for r-state parsimony, it is possible to
change two leaf states from a to 0 and cause the modified estimation to be b, while
the original estimation is 0. An example is shown in Fig. 13.

A remaining problem is whether or not it is possible to change one leaf state from a
to 0 and obtain a modified estimation of {b}, b 6= 0, which the original estimation is
{0}? This turns out to be impossible by the following result.

Proposition 6.2.1. Changing one leaf state from a 6= 0 to 0 cannot result in the
modified estimation to be b 6= 0, if the original estimation is {0}.

Proof. We apply proof by contradiction. Assume there is a tree such that the modified
estimation to be b 6= 0, while the original estimation is {0}. Then consider the two
edges that lead to the root, as in Fig. 14: Firstly, one side of the root has to contain
the change, and the modified and original parsimony estimation for that side must be
0, S1 and S2 respectively (as the single root state must be the result of intersections)
and such that S2 ∩ S1 = φ and {0} ∩ S2 = φ. Find the lowest position on the tree
such S2 and 0, S1 occurs.

Secondly, consider A and A′ through the following four cases:
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Figure 12. Counter example for the r-state model change

 

 
   

 

 

 
      

    
 

 

  
      

 
 
 

 

 

    

  

        

            

     
 

 

 

  

 
      

    
 

 

  
      

             

     
 

 

 

              
 
 

 

 

 
 

 

 

Figure 13. Counterexample for the r-state model with 2 changes
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Figure 14. Representation of T for the r-state model with 1 changes

0, S1 intersection intersection union union
S2 intersection union intersection union

Here ‘intersection’ means the set is obtained by parsimony through intersection, and
‘union’ means the set is obtained by parsimony through union.

If 0, S1 and S2 both come from intersection, then A and A′ would satisfy the require-
ments for S2 and 0, S1, hence we obtain a contradiction (as no root state satisfies
this requirement); If 0, S1 comes from intersection and S2 comes from union, then
0 ∈ S2, which is again a contradiction; If 0, S1 comes from union and S2 comes from
intersection, then S2 ∈ S1, a contradiction with S2 ∩ S1 = φ; If 0, S1 and S2 both
come from union, then A and A′ would satisfy the requirements for S2 and 0, S1,
hence, once again, we obtain a contradiction. �
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